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The effect of the dynamic recrystallization (DRX) parameters are of prime importance to improve the
accuracy of the numerical simulation of hot forming processes for metals. However, it is difficult to
determine the values of DRX parameters from experiments because of the influence of various factors, such
as temperature, etc. In the present study, the DRX parameters for AZ31 magnesium alloy are identified by
using the method of inverse analysis based on measured stress, BP neural network algorithm, genetic
algorithm (GA), orthogonal experiment, and numerical simulation. Then, by applying the identified
parameters in finite element analysis, the comparison between the numerically calculated and the experi-
mental results is made to verify the correctness of the method. The results show that the numerically
calculated stress, strain, recrystallized fraction, and average grain size valus are in good agreement with the
experimental ones. These results demonstrate that the method of inverse analysis is a feasible and an
effective tool for determination of the AZ31 DRX parameters.
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1. Introduction

AZ31 magnesium alloy is one of the lightest metals being
used for structural application. It is considered a possible
alternative to steel and aluminum in automotive and aero
industries to satisfy the lightweight requirement. AZ31 mag-
nesium is a low stacking fault energy alloy. Dynamic recrys-
tallization (DRX) is a frequent occurrence in hot deformation
processes (Ref 1, 2). During DRX, the microstructure varies
greatly, and affects the final properties of the component.
Therefore, it is very important to predict and control of the
microstructure evolution during DRX. Up to now, several DRX
mechanisms of magnesium alloys at different temperatures
have been proposed (Ref 3-6). Different DRX and deformation
mechanisms were operative at different temperature regions. At
low temperatures, twining plays an important role in DRX. At
intermediate temperatures, continuous DRX associated with
cross-slip occurs. At high temperatures, conventional DRX
with self-diffusion occurs.

However, owing to the complexity of DRX process and the
limitation of experimental method, it is difficult to describe the

DRX process accurately through theoretical or experimental
approach. Consequently, how to input nucleation information is
critical to modeling and simulation of DRX. Various methods
have been proposed to simulate DRX and microstructure
evolution, such as Monte Carlo (MC) and cellular automation
(CA). Compared with MC, CA model is more veridical and
flexible in simulating the DRX process (Ref 7), e.g., it enables
quantitative simulation of stored energy-driven migration of
boundary (Ref 8), and its time step is more easily mapped to
real time (Ref 9). Therefore, this method has been attracting
greater attention in recent years. The CA simulations mainly
focused on the effect of deformation temperature, strain rate,
and initial grain size on DRX.

Dislocation density plays a very significant role in nucle-
ation and microstructure evolution of DRX during hot defor-
mation processing. Therefore, most of the present CA
simulations are based on dislocation evolution models (Ref
10-13). Many models are developed to describe the evolution
of dislocation density (Ref 10, 11) in primary grains and
R-grains, nucleation (Ref 12, 14) and grain growth (Ref 13)
during DRX. For a specific CA model of DRX, accurate
estimation of the model parameters is an essential prerequisite
for assessing the model. However, it is difficult to determine the
values of CA model of DRX parameters from experiments
because of the influence of various factors, such as temperature,
etc. Fortunately, in recent years, the development of the method
of inverse analysis based on the field measurements has made
rapid strides, and this method has been applied successfully to
solve many complex engineering problems (Ref 15-20). The
essence of the method of inverse analysis is the realization of
optimization techniques. Previous attempts at solution of the
inverse problem have involved the use of statistical methods,
such as regression analysis with application of relevant
transform, for fitting curves to the available experimental data
(Ref 21). While such techniques are useful for identifying
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general trends in process inputs and outputs, they are subject to
a number of disadvantages. Over the past few years, the interest
in artificial neural networks has grown sharply for the more
effective application of method of inverse analysis in complex
problems (Ref 21). In the field of engineering science and
computational mechanics, the research and applications of
neural networks are being used very extensively and found to
be successful. The BP network is one of the main types being
applied to engineering. The related studies concern almost all
topics of engineering science and mechanics (Ref 21-24), such
as structural identification, parameter and transfer coefficient
estimation, equation solver, identification of material charac-
terization, and fault diagnoses, etc.

In the study, the DRX parameters for AZ31 magnesium
alloy are identified using the method of inverse analysis based
on measured stresses, BP neural network algorithm, genetic
algorithm (GA), orthogonal experiment, and numerical simu-
lation. Then, the experimental and numerically calculated
stresses based on the identified parameters at various strains are
compared to verify the feasibility of the method for determi-
nation of the DRX parameters.

2. CA Model of DRX

2.1 Model Assumption

To simplify the simulation process, two assumptions are
employed in the model (Ref 25, 26):

(1) The dislocation density is homogeneous in primary
grains, and it increases with strain; then, DRX will
occur when the dislocation density exceeds the critical
value. The initial dislocation density is zero in the new
R-grains, and it increases with strain.

(2) During DRX, nucleation initially takes place on primary
grain boundaries. Until primary grain boundaries are
used up, the nucleation will take place on R-grain
boundaries.

2.2 Theoretical Model of DRX

2.2.1 Modeling of Dislocation Evolution. The disloca-
tion evolution model describes the effect of work hardening and
dynamic recovery on dislocation density. For both primary
grains and R-grains, the variation of dislocation density is
calculated by the model proposed by String (Ref 10):

dq
de
¼ h� rq ðEq 1Þ

where h and r are the parameters representing work hardening
and dynamic recovery, respectively.

h ¼ h0 _e exp
Q

RT

� �
; r ¼ r0 _e�1 exp

�Q
RT

� �
;

where h0 and r0 are the parameters representing the initial
work hardening and the initial dynamic recovery, respectively.
Q is the activation energy. R is the ideal gas constant.

Moreover, the flow stress is typically calculated from the
value of dislocation density (Ref 11):

r ¼ alb
ffiffiffi
q
p ðEq 2Þ

where a is a dislocation interaction term which equals 0.5-1.0
for most metals; l is the shear modulus; and b is the magni-
tude of the Burgers vector.

2.2.2 Modeling of Nucleation. In the CA model, it is
assumed that deformation is under the isothermal temperature and
same strain rate condition. Nucleation is triggered while the
dislocation density of the matrix reaches a critical value qc. The
critical density depends on the deformation conditions as (Ref 12):

qc ¼
20cm _e
3blms2

� �1=3

ðEq 3Þ

where cm is the boundary energy for a high angle boundary;
m is the grain boundary mobility; s represents the dislocation
line energy, s ¼ 0:5lb2; l is the mean free path of disloca-
tion, which can be thought as the diameter of sub-grain,
l ¼ 10lb=r.

The DRX nucleation rate _N at temperature T can be
represents as (Ref 14):

_N ¼ Nc _e exp� Q

RT

� �
ðEq 4Þ

where Nc is nucleation rate constant.
2.2.3 Modeling of Grain Growth. The initial dislocation

densities in the R-grain are almost zero after DRX. The
deviation between the R-grain and the primary grain gives
the driving force for the grain growth. The driving force is the
stored strain energy. A grain boundary moves with a velocity
(v) in response to the net pressure (f) on the boundary. It is
generally assumed that the velocity is directly proportional to
the pressure and that the constant of proportionality is the
mobility (m) of the boundary as follows (Ref 4):

v ¼ mf ¼ bdD0b

kT
exp � Q

RT

� �
� f ðEq 5Þ

where d is the characteristic grain boundary thickness, D0b

denotes the boundary self-diffusion coefficient, k repre-
sents the Boltzmaneural network�s constant, k = 1.3819
10�23 J K�1.

In this study, it is assumed that the DRX grain is sphere. The
driving force, fi, for the growth of a grain of a radius, ri, can
then be expressed as

fi ¼ sðqm � qiÞ � 2ci=ri ðEq 6Þ

where qi and qm are the dislocation density of i-grain and its
surrounding deformed matrix, respectively, and ci is the grain
boundary energy, which depends on the misorientation hi
between the i-grain and its surrounding matrix as (Ref 13):

ci ¼
cm

hi
hm

1� ln hi
hm

� �
; hi < 15�

cm; hi � 15�

(
ðEq 7Þ

where hm and cm are the misorientation and the boundary
energy for a high angle boundary, respectively.

3. High-Temperature Compression Testing

The experiments were carried out on AZ31 magnesium
alloy with chemical compositions 3.2 Al, 0.8 Zn, and a
minimum Mn content of 0.4 (wt.%). Hot-extruded AZ31 alloy
bars of 47.2 mm in diameter were used in this study.
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Cylindrical specimens of 10 mm in diameter and 12 mm in
height were machined from hot-extruded bars with the axis
along the extrusion direction. Compression tests were carried
out at constant strain rates, such as 0.03, 0.3, 3, 30, and 90 s�1,
and temperature such as 300, 350, 400, 450, and 500 �C using
Gleeble 3500. The specimen was resistance-heated through
a thermocouple sending feedback signals to control the
AC-current. In the present study, a very fine, fast-response
thermocouple with a diameter of 0.08 mm was used for
capturing the temperature changes occurring during the tests.
Before deformation was initiated, graphite foils were put on the
specimen�s flat ends as lubricant. Specimens were preheated to
the required temperature with a heating rate of 10 �C s�1 and
homogenized for 60 s, then compressed to 4.4 mm in height,
achieving a true strain of 1.0. All the tests were performed in a
nitrogen atmosphere.

4. Inverse Identification of the Model Parameters

The inverse problem is typically referred to the determina-
tion of unknown model parameters in the direct problem. The
accurate identification of the model parameters determines the
reliable ones among the simulation results. In the CA model,
the values of material parameters such as l, b, and km can be
obtained from the literature or manuals. Other parameters, such
as the initial hardening parameters h0, initial recovery param-
eters r0, and nucleation parameters, can be hardly determined
form the experiments. The microstructure evolution during
DRX will influence the flow stress of the material, which is
easy to be obtained and relative reliable. Therefore, it is
possible to identify the DRX parameters with inverse method,
based on the measured flow stress.

The inverse method of solving process for the DRX
parameters is shown in Fig. 1. It includes the following: (i)
normalizing of input/output data containing the h0, r0, qc; Nc,
and a set of simulated flow stresses with strain using FEM; (ii)
training BP network; (iii) initialing the DRX parameters at
random, and predicting the flow stress by the BP network; (iv)
comparing the predicted flow stress and the measured flow
stress with strain; (v) putting the above DRX parameters into
the first population, and calculating the new population by GA;
(vi) adjusting the input parameters according the new popula-
tion; and (vii) predicting the new stress by the BP network
again to obtain the improved parameters, and (vii) recognizing
the DRX parameters by repeating the above seven processes.
The detail of each part of this process will be given in the
following sections.

4.1 Training Data Samples Using Neural Networks

BP neural network is referred to as a type of computational
models, which consists of hidden-layer neurons between the
input and output neurons. The nonlinear hyperbolic functions
are usually used as the activation functions to increase the
modeling flexibility (Ref 19). In this study, the two-hidden
layer BP neural network was adopted.

The samples for the training of the BP neural network model
consist of a number of sets of inputs and outputs. First, in order
to describe the inverse characteristics of AZ31 magnesium
DRX parameters, these training samples including both the
initial training and the retraining should be carefully selected.
Then, these training samples should cover all possible values.

In this study, the training samples were obtained by using finite-
element method instead of carrying out an actual experiment.

For more stable and faster results, the stress was calculated
for every true strain 0.1. Then, the true stress was obtained for
every true strain 0.1 through compression tests by Gleeble
3500. The flow stress distribution was obtained using a
commercial finite-element package, DEFORM to obtain the
training samples; DEFORM was chosen as the platform for the
numerical simulation operation because it has the ability to
develop user-programmable routines to describe dependent
boundary conditions spatially and temporally.

Second, for successfully utilizing BP neural network model,
the inputs of the BP neural network model should be carefully
chosen so that the variation in the outputs can be truthfully
reflected by the changes of these inputs. Therefore, the DRX
parameters of h0, r0, qc; Nc are selected as the inputs.

It is well known that the flow stress changes are chiefly
affected by two stages, which are dynamic recovery and DRX.
In the BP neural network model, the stresses at every 0.1 strain
were expressed as y1, y2, …, y10, respectively, and were used as
the outputs for the BP neural network model, expressed as y in
Fig. 3. Moreover, the 4-23-25-10 neural network is acquired
after repeating calculation, and the global error is 0.025289.

According to Ref 27, the searching scopes of the DRX
parameters are set as given in Table 1.

In this study, we construct orthogonal designs suitable for
the study samples of neural network (Ref 27, 28). As there are
four DRX parameters, an experimental design with four factors
and nine levels will be denoted by orthogonal table L32ð49Þ,
i.e., there are 32 sets of experiments. Then, the simulation flow
stresses are acquired under certain temperature and strain rate.
In addition, the study sample dates must be normalized between
0 and 1 before neural network training.

4.2 Optimization Using GA Model

Genetic algorithm (GA) is an important stochastic search
algorithm for solving optimization problems based on the
concept of natural selection and evolution processes (Ref 29, 30).

In this study, according to the characteristic of inverse
method, the cost function can be defined as

EðkÞ ¼ 1

N

XN
i¼1

r�i � rc
i

r�i

� �2

ðEq 8Þ

where rc
i and r�i are, respectively, neural network-calculated

and test-measured flow stresses at the strains eiði ¼ 1; . . . ;NÞ;
and N is the number of sample points on the stress-strain
curve.

GA operates on a population of the parameters k that are
initially generated at random. The EðkÞ is set as the fitness for
the individuals. GA seeks to attain the optimum value of the
population by selecting the fittest individuals from the popu-
lation and using their ‘‘genetic’’ information in ‘‘mating’’
operations to create a new population of solution.

Then, the input parameters k are changed according the new
population, and the new stress values are predicted by the BP
neural network again as shown in Fig. 1. Repeat the above
processes, until the rational parameters are found k to satisfy
the target function EðkÞ � 0:001. In this study, after repeating
calculations, the parameter values used in GA are as follows:
population size M = 50, generation number T = 300, crossover
probability Pc = 0.7, and mutation probability Pm = 0.001.
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Moreover, to evaluate the effect of rate of deformation on
the deformation behavior of the material at three specific
temperatures, three different forming speeds are required under
isothermal conditions in this study. Therefore, the cost function
consists of nine terms as defined in Eq 9, namely, differences

between the experimental and the corresponding flow stresses
by BP network predicting in a least-square sense at three
different forming velocities V1, V2, and V3.

EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

X3
i¼1

1

N

XN
j¼1

r�ij � rc
ij

r�ij

 !2
2
4

3
5

vuuut
�������
T1

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

X3
i¼1

1

N

XN
j¼1

r�ij � rc
ij

r�ij

 !2
2
4

3
5

vuuut
�������
T2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

X3
i¼1

1

N

XN
j¼1

r�ij � rc
ij

r�ij

 !2
2
4

3
5

vuuut
�������
T3

(Eq 9)

Table 1 Parameters scopes

Parameter Scopes

Critical dislocation
density, m�2

qc 2 f1:2809� 1014; 1:4976� 1014g

Nucleation rate
constant, m�1 s�1

Nc 2 f5000; 250000g

Initial work hardening h0 2 f1:0000� 1015; 1:2900� 1015g
Initial dynamic recovery r0 2 f6:000; 8:900g

Fig. 1 Flow chart of inverse analysis algorithm using BP neural network and GA
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5. Simulation Results and Discussions

To verify the reliability of the identification method, three
typical deformation processes were simulated. The simulation
results of both the microstructure and the flow stress were
compared with experimental measurements. Parameters used in
the simulations are shown in Table 2 (Ref 31, 32).

In this study, the learn rate in the BP network is set as 0.05.
By calculating with the developed inverse method, the
optimum value of DRX parameters is identified as follows:

qc ¼ 1:340� 1014 m�2; Nc ¼ 1:295� 104 m�1 s�1;

h0 ¼ 1:201� 1015; r0 ¼ 7:943:

5.1 Simulation Result of Flow Stress

Figure 2 shows the comparison between the predicted and
measured flow stress. It can be found that the simulation results
are generally in good agreement with experimental ones.
According to Fig. 3, the maximum relative error of the
simulated flow stress is about 5-8%.

The error of the simulation results are mainly caused by the
developed inverse model. In the developed inverse model, it
was assumed that when the dislocation density exceeds the
critical value, the nucleation rate of DRX is a constant.
However, actually, with the increasing deformation, the stored
energy will increase, leading to the increasing of nucleation
rate. If the nucleation rate was set as a constant, then the set
value will be greater than the real nucleation rate at the start of
DRX, and less than the real nucleation rate at the steady stage,
which can be corresponded to the discrepancy between the
simulated and measured flow stresses shown in Fig. 2.

Figure 4 shows the simulated strain hardening rate
hðh ¼ dr=deÞ. It can be seen that strain hardening rate is high
at the initial stage, indicating that work hardening is the
dominant mechanism. Then, it decreases rapidly. When the
temperature and strain rates meet certain conditions, DRX
occurs. When the stress reaches a critical value, then the critical
strain can be obtained accordingly.

Figure 5 shows that the peak strains ep at different
temperatures are close to the measured values, and the ratios
of the simulated critical strain to peak strain ðec=epÞ are
between 0.64 to 0.83, being in very good agreement with the
theoretical values in the range of 0.65-0.90.

Table 2 Parameters used in the simulations

Temperature, K Q, kJ mol21 D0b, m
3 s21 b, m l, Pa cm, J m22

573 40 5.39 10�13 3.21910�10 16.679 1010 0.93
623 69
673 113

Fig. 2 Comparison between simulation and real stress Fig. 3 Relative error of simulation stress

Fig. 4 Hardening rate curve
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5.2 Simulation Results of Microstructure Evolution

The CA method deals with an array of cell, the evolution of
which is characterized by the state of cell determined by the
neighborhood and the transformation rule. For the purpose of
simulating the DRX behavior, the simulation space is disinte-
grated into an array of equally shaped quadratic cells of 809 80
sites with the periodic boundary conditions. The size of each
lattice site is 1 lm, and the simulation lattice represents
80 lm9 80 lm in the real material.

Figure 6 shows the fraction of DRX during deformation of
AZ31 magnesium alloy. It can be found that the initialization
strain for DRX is about 0.15. The volume fraction of DRX
increases with the increasing of strain. In addition, the volume
fraction of DRX also increases with the increasing deformation
temperature. However, when the strain reaches 0.9, the volume
fractions of DRX are similar at different temperatures. From
Fig. 6, it can also be found that the error between the calculated
and the measured volume fractions of DRX is less than 9%.
The DRX volume fractions of the compressed samples were
measured using a TSL EBSD system (SIT camera, OIMTM 4
software) attached to a Zeiss Gemini 982DSM (primary
electron energy: 20 keV; probe current: 2.8 nA).

Figure 7 shows the quantitative description of the micro-
structure evolution during hot deformation process. It can be
seen that the grain size decreases with the deformation strain.
For example, at the temperature of 400 �C, the grain size
decreases from 35 lm to about 5 lm.

Figure 8 shows the comparison between the simulated and
measured grain structures of the compressed samples. The
observational face was taken along the axial direction of the
deformed specimens, then ground, and polished, followed by
etching with Acetic-Picric acid (4.2 vol.%). The metallographic
analysis was carried out on DM1500 instrument. The mean
grain size of microstructure was taken to be the average value
of 20 fields of view. In Fig. 8, it is seen that a close agreement
between the experimental measurements and computed ones
was achieved. At the strain of 0.2, serration and bulges develop,
and eventually new grains are generated along the primary
grain boundaries, leading to a beck lace structure. The average
grain size is about 16.98 lm. At the strain of 0.5, most of the
primary grains are recrystallized. The average grain size is
about 9.05 lm. When the strain reaches 1.0, the structure is
fully recrystallized. Homogeneous distribution of fine equiaxed
grain structure is obtained. The average grain size is about
5.72 lm.

6. Conclusions

(1) The AZ31 DRX model parameters have been success-
fully determined by using the method of inverse analysis
based on measured stress at every 0.1 true strain, BP
neural network algorithm, genetic algorithm, orthogonal
experiment, and numerical simulation.

(2) The correctness of method has been verified through the
comparison between the numerically calculated and the
compressed experimental results based on the identified
parameters used in finite element analysis. The results
show that the numerically calculated stresses, strains,
recrystallized fractions, and average grain sizes are in
very good agreement with the experimental ones. It is
satisfactorily demonstrated that the method of inverse
analysis is a feasible and an effective tool for the deter-
mination of the AZ31 DRX model parameters.

Fig. 5 Comparison between the true peak strain, simulation peak
strain, and critical simulation strain

Fig. 6 Comparison between the simulation and experimental frac-
tions of dynamic recrystallization at different temperature

Fig. 7 Change of simulation average grain size with strain
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